Global and blow-up solutions for quasilinear parabolic equations with a gradient term and nonlinear boundary flux

نویسندگان

  • Changjun Li
  • Lu Sun
  • Zhong Bo Fang
چکیده

This work is concerned with positive classical solutions for a quasilinear parabolic equation with a gradient term and nonlinear boundary flux. We find sufficient conditions for the existence of global and blow-up solutions. Moreover, an upper bound for the ‘blow-up time’, an upper estimate of the ‘blow-up rate’ and an upper estimate of the global solution are given. Finally, some application examples are presented. MSC: 35R45; 35K65; 34A12

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Blow-Up of Solutions for a Class of Reaction-Diffusion Equations with a Gradient Term under Nonlinear Boundary Condition

The blow-up of solutions for a class of quasilinear reaction-diffusion equations with a gradient term ut = div(a(u)b(x)∇u)+ f (x,u, |∇u|2, t) under nonlinear boundary condition ∂u/∂n + g(u) = 0 are studied. By constructing a new auxiliary function and using Hopf’s maximum principles, we obtain the existence theorems of blow-up solutions, upper bound of blow-up time, and upper estimates of blow-...

متن کامل

Global existence and blow-up solutions for quasilinear reaction-diffusion equations with a gradient term

In this work, we study the blow-up and global solutions for a quasilinear reaction–diffusion equation with a gradient term and nonlinear boundary condition:      (g(u)) t = ∆u + f (x, u, |∇u| 2 , t) in D × (0, T), ∂u ∂n = r(u) on ∂D × (0, T), u(x, 0) = u 0 (x) > 0 in D, where D ⊂ R N is a bounded domain with smooth boundary ∂D. Through constructing suitable auxiliary functions and using ma...

متن کامل

Existence of blow - up solutions for quasilinear elliptic equation with nonlinear gradient term

In this paper, we consider the quasilinear elliptic equation in a smooth bounded domain. By using the method of lower and upper solutions, we study the existence, asymptotic behavior near the boundary and uniqueness of the positive blow-up solutions for quasilinear elliptic equation with nonlinear gradient term.

متن کامل

A Quasilinear Parabolic System with Nonlocal Sources and Weighted Nonlocal Boundary Conditions

Abstract In this paper, we investigate the blow-up properties of a quasilinear reaction-diffusion system with nonlocal nonlinear sources and weighted nonlocal Dirichlet boundary conditions. The critical exponent is determined under various situations of the weight functions. It is observed that the boundary weight functions play an important role in determining the blow-up conditions. In additi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014